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Abstract

From the formation of snowflakes to the evolution of di-
verse life forms, emergence is ubiquitous in our universe.
In the quest to understand how complexity can arise from
simple rules, abstract computational models, such as cellu-
lar automata, have been developed to study self-organization.
However, the discovery of self-organizing patterns in artificial
systems is challenging and has largely relied on manual or
semi-automatic search in the past. In this paper, we show that
Quality-Diversity, a family of Evolutionary Algorithms, is an
effective framework for the automatic discovery of diverse
self-organizing patterns in complex systems. Quality-Diversity
algorithms aim to evolve a large population of diverse indi-
viduals, each adapted to its ecological niche. Combined with
Lenia, a continuous cellular automaton, we demonstrate that
our method is able to evolve a diverse population of lifelike
self-organizing autonomous patterns. Our framework, called
Leniabreeder, can leverage both manually defined diversity
criteria to guide the search towards interesting areas, as well
as unsupervised measures of diversity to broaden the scope
of discoverable patterns. We demonstrate both qualitatively
and quantitatively that Leniabreeder offers a powerful solution
for discovering self-organizing patterns. The effectiveness
of unsupervised Quality-Diversity methods combined with
the rich landscape of Lenia exhibits a sustained generation of
diversity and complexity characteristic of biological evolution.
We provide empirical evidence that suggests unbounded diver-
sity and argue that Leniabreeder is a step towards replicating
open-ended evolution in silico.

Introduction
Over four billion years, evolution on Earth has showcased a
captivating trend of continuous innovation and increasing bio-
logical complexity. This phenomenon has intrigued scientists
and sparked the fundamental question of how inanimate mat-
ter can spontaneously organize into a diversity of life forms.
To understand how complex wholes can emerge from simple
parts, researchers have turned to computational models.

Pioneered by John von Neumann and others, particu-
larly through groundbreaking work on self-replicating ma-
chines (Neumann and Burks, 1966), Cellular Automata (CA)
have become a fundamental framework for studying emer-
gence and complexity. CA are capable of generating complex
patterns that emerge solely from the local interactions of their

components, following simple, deterministic rules. Con-
way’s Game of Life (Gardener, 1970) is a prominent example
among CA. Despite its underlying simplicity — defined by
a set of four basic rules governing the birth, survival, and
death of cells on a grid — Conway’s Game of Life has given
rise to a surprisingly vast array of self-organizing structures
(e.g., stable forms, oscillators, spaceships, etc.). Later on, it
was proved to be Turing complete, a property meaning it can
simulate any Turing machine.

Continuous CA, such as Lenia (Chan, 2019) and Smooth-
Life (Rafler, 2011), marked a significant advancement by
bridging the gap between the discrete nature of Conway’s
Game of Life and the continuous dynamics characteristic of
the real world. Interactive evolutionary computation methods
revealed that Lenia can support a diversity of lifelike, self-
organizing autonomous patterns. It led to the identification
and classification of hundreds of artificial species, uncovering
emergent behaviors such as locomotion, differentiation, re-
production, and emission (Chan, 2019, 2020). Consequently,
Lenia stands as a fertile ground for exploring the underly-
ing mechanisms of artificial evolution within a controlled
computational environment and serves as an ideal testbed for
examining the emergence of diverse artificial life. However,
self-organizing patterns have mostly been discovered through
manual or semi-automatic search algorithms (Chan, 2019),
limiting our ability to fully explore this vast potential.

Mirroring biological evolution, Quality-Diversity (Pugh
et al., 2016; Cully and Demiris, 2018) is a family of Evolu-
tionary Algorithms that aims to discover a diverse popula-
tion of individuals, each adapted to its ecological niche. In
contrast with traditional optimization methods, the goal of
Quality-Diversity algorithms is to find a large collection of
different, high-performing solutions. Consequently, these
methods hold the promise to realize Lenia’s full potential
and illuminate an ecosystem of diverse artificial species.
Objective-based optimization methods are prone to get stuck
in local optima, whereas keeping a repertoire of diverse solu-
tions can help to find stepping stones that lead to globally bet-
ter solutions (Mouret and Clune, 2015; Faldor et al., 2023a,b),
mimicking evolution in nature.
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In this work, we show that Quality-Diversity algorithms
are an effective solution to the problem of automatic discov-
ery of diverse self-organizing patterns in high-dimensional
complex systems (Reinke et al., 2020; Etcheverry et al., 2021).
In particular, we demonstrate that Quality-Diversity has the
capacity to unleash the untapped potential of Lenia’s rich
landscape. To that end, we leverage both supervised and
unsupervised Quality-Diversity methods. The supervised
approach, MAP-Elites (Mouret and Clune, 2015), utilizes
manually defined diversity metrics to guide the exploration
towards specific characteristics of interest, facilitating the
identification of patterns with unique properties such as color
or motion. However, the necessity to manually specify di-
versity criteria inherently restricts the breadth of discover-
able self-organizing patterns. To address this limitation, we
employ an unsupervised approach, AURORA (Grillotti and
Cully, 2022), that automatically learns a measure of diversity,
significantly broadening the scope of discoverable patterns
without the need for predefined diversity criteria.

However, this unsupervised method comes with its own
set of challenges. Indeed, the Lenia search space is vast,
and this artificial evolution process will likely lead to diverse
patterns that explode or evaporate quickly. Although some
of these individuals present intriguing similarities to Turing
patterns (Turing, 1952), in this paper, we focus the search
towards localized and autonomous self-organizing patterns,
called solitons (Chan, 2019). To that end, we introduce a set
of both manually defined and unsupervised fitness functions,
that capture basic characteristics of life, such as agency or
homeostasis (Bartlett and Wong, 2020). These fitness func-
tions encode simple heuristics that guide the search towards
meaningful expressions of artificial life.

We introduce Leniabreeder, a framework designed to au-
tomate the discovery of diverse self-organizing patterns in
complex systems. Our contributions are as follows:

• We show that Quality-Diversity is an effective approach
for the automatic discovery of diverse artificial species
within Lenia. Those methods are generally applicable to
other artificial life systems.

• We introduce a set of manually defined and unsupervised
fitness and descriptor functions, tailored to guide the search
towards meaningful expressions of artificial life.

• We provide evidence that our method demonstrates some
characteristics of artificial open-ended evolution, exhibit-
ing a sustained generation of diversity and mirroring the
continuous innovation observed in nature.

We report quantitative and qualitative results, underscoring
the potential of our framework to unlock new frontiers in
artificial life research. Through the convergence of Lenia and
Quality-Diversity, we explore open-ended evolution within
computational systems.

Background
Lenia
Lenia is a cellular automaton that generalizes Conway’s
Game of Life to continuous space-time-state, generalized
local rule as well as higher dimensions, multiple kernels,
and multiple channels (Chan, 2020). Interactive evolutionary
computation methods have revealed that Lenia supports a di-
versity of lifelike self-organizing autonomous patterns (Chan,
2019), making it a fertile ground for the study of artificial
open-ended evolution (Chan, 2023).

In Lenia, the world starts in an initial configuration A0, de-
fined as a d-dimensional lattice with c channels of real values
between 0 and 1. In this work, we use the generalized rule
with multiple kernels Kk and growth mappings Gk (Chan,
2020). The update is calculated as an average of the results
for each kernel, weighted by factors hk/h. Therefore, the
state of the world is updated according to the formula:
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Each kernel is characterized by a relative radius rkR, a
parameter βk ∈ [0, 1]B and a growth mapping with param-
eters µk and σk following the descriptions by Chan (2020,
2019) . In this paper, a growth mapping is a function Gk :
[0, 1] → [−1, 1] such that Gk(u) = 2 exp(− 1
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and a kernel Kk is constructed by combining an exponential
kernel core and a kernel shell with parameter βk, as defined
by Chan (2019). To summarize, each kernel is defined by a
set of parameters (rkR, βk, µk, σk, hk).

Quality-Diversity
Evolution in nature has the remarkable capacity to produce
a rich diversity of species, each exquisitely adapted to its
local environmental niche. Inspired by this idea, Quality-
Diversity approaches, such as novelty search with local com-
petition (Lehman and Stanley, 2011) or MAP-Elites (Mouret
and Clune, 2015), are a family of evolutionary algorithms
that aim to return a collection of different niches, as well as
the best individual living in each niche (Pugh et al., 2016).
In contrast with traditional evolutionary algorithms that fo-
cus solely on finding the optimal solution, Quality-Diversity
methods generate large populations of simultaneously high-
fitness and different individuals (Cully and Demiris, 2018).

In addition to the fitness F (x) that determines the qual-
ity of a solution x in the search space X , Quality-Diversity
optimization also necessitates the descriptor D(x), that is
generally manually defined and characterizes the solution
x for the type of diversity desired. The descriptor space
D = D(X ) together with the Euclidean distance define a
metric space that enables the computation of distances be-
tween individuals or to measure the novelty of a new solution.
The objective of QD algorithms is to find the highest fitness
solution at each point of the descriptor space.



MAP-Elites MAP-Elites (Mouret and Clune, 2015) is a
simple but efficient Quality-Diversity method. The algorithm
discretizes the descriptor space into a multi-dimensional grid
of cells and searches for the best solution in each cell. MAP-
Elites starts by initializing the grid with random solutions.
Then, the algorithm iteratively executes the following steps
until a predefined budget of evaluation is reached: (1) a batch
of parent solutions is uniformly selected from the grid, (2)
a batch of offspring solutions is generated from the parents
through a variation operator, (3) for each offspring solution,
both its fitness and descriptor are evaluated, and (4) offspring
solutions are added to the grid. A solution is added to its
corresponding cell in the grid if and only if the cell is empty
or the solution has a higher fitness than the current solution
occupying that cell, in which case the current solution is
replaced by the new one.

AURORA AURORA (Cully, 2019; Grillotti and Cully,
2022) is a Quality-Diversity algorithm that circumvents the
need for manual definitions of diversity. It leverages unsuper-
vised learning to automatically define a descriptor function
through parameters θ. The algorithm follows a standard QD
loop. During the evaluation step, the descriptors are deter-
mined using the current descriptor function, denoted as Dθ.
In turn, this descriptor function is continuously trained via
unsupervised learning, on the data generated during evalua-
tion, giving new parameters θ′. The new descriptor function
Dθ′ redefines the niches within the search space, not only
influencing local competition within the current population
but also shaping subsequent offspring evaluation and addi-
tion. This dynamic interaction between the individuals and
their niches propels a cycle of discovery, where each indi-
vidual adapts to its niche but also drives the realignment
of niche boundaries. AURORA mirrors the dynamic inter-
play observed in ecosystems, where species not only adapt
to environmental changes but also shape the structure and
boundaries of niches (Jones et al., 1994; Wright et al., 2002).

Open-Ended Evolution
Open-ended evolution research seeks to understand the mech-
anisms and conditions that enable the perpetual emergence
of novelty, characteristic of biological evolution (Packard
et al., 2019). This pursuit is one of the greatest challenges in
evolutionary biology and artificial life research. Exploring
open-ended evolution goes beyond understanding biology
or generating captivating simulations. It raises fundamental
questions about the nature of creativity, the emergence of
complexity, and how innovative solutions can arise in artifi-
cial systems (Soros et al., 2017).

Despite significant efforts, achieving genuine open-ended
evolution in silico has proven challenging. A key obstacle is
the development of formal and objective definitions, despite
some advancements in this area (Packard et al., 2019; Adams
et al., 2017; Taylor, 2015; Maley, 1999; Hintze, 2019; Soros

and Stanley, 2014; Pattee and Sayama, 2019). Therefore, our
work does not claim to achieve theoretical open-endedness.
Instead, we offer it as a step towards understanding and
replicating aspects of open-ended evolution.

Nature encompasses numerous niches, enabling different
species to be successful independently of each other. For
instance, the agility of cheetahs in hunting does not pre-
vent orcas from thriving underwater. This remarkable range
of species produced within a single run inspired Quality-
Diversity algorithms to prioritize generating diverse solutions
in pursuit of open-endedness. However, MAP-Elites does
not allow the addition of new cells over time that did not
exist in the original descriptor space, and as a result, can-
not exhibit true open-ended evolution (Mouret and Clune,
2015). AURORA moves closer to open-ended evolution by
dynamically adapting the criteria through which diversity is
assessed. This method allows to continuously uncover new
niches without being constrained by a predefined descriptor
space, thereby avoiding premature convergence. As a result,
AURORA can foster a more genuinely open-ended process
of discovery, akin to the way biological evolution endlessly
explores new forms of life and strategies for survival. Finally,
this approach overcomes the limitations of manually defined
diversity and complexity metrics that have historically hin-
dered open-ended evolution research (Hintze, 2019).

Related Work
Automatic Discovery of Self-Organizing Patterns
Computational models, including cellular automata, have
been extensively used to explore artificial self-organizing
patterns, typically identified manually or assisted with com-
puter simulation (Neumann and Burks, 1966; Turing, 1952;
Wolfram, 2002). While more refined methods have been
employed to search for specific rules or patterns (Sapin et al.,
2003; Mitchell et al., 2000), our approach aims to illuminate
a diversity of autonomous configurations. This focus on di-
versity aligns closely with methods like IMGEP, which have
similarly been applied to discover a range of patterns within
Lenia (Etcheverry et al., 2021; Reinke et al., 2020). Despite
these similarities, our method diverges from IMGEP-based
approaches in two key aspects. We adopt a methodology that
is not goal-directed, making it inherently closer to the nature
of biological evolution. Additionally, we compute fitness and
descriptor functions based on multiple timesteps and not only
on the final state of the system.

Neural cellular automata have emerged as a powerful tool
for studying regeneration and pattern formation (Mordvintsev
et al., 2020). This approach, combining the principles of
cellular automata with the adaptability of neural networks,
has provided insights into the self-organizing capabilities of
biological and artificial systems (Mordvintsev et al., 2020;
Palm et al., 2021). Unlike our approach, which explores a
wide range of self-organizing structures, these systems focus
on growing specific target patterns.



Artificial Open-Ended Evolution
Numerous artificial life systems have demonstrated a poten-
tial for open-endedness (Soros and Stanley, 2014; Standish,
2002; Hintze, 2019). While most research in this area has
focused on developing new algorithms, crafting novel artifi-
cial systems, or establishing necessary conditions for open-
endedness, our work adopts a different approach. We show
that existing Quality-Diversity algorithms, under appropriate
conditions, inherently possess the capabilities to exhibit some
open-ended evolutionary dynamics.

In the context of Lenia, recent research has investigated
the potential for open-endedness. In particular, Plantec et al.
(2023) introduced a mass-conservative extension of Lenia,
diverging from our method by modifying Lenia’s rules. Chan
(2023) explored open-endedness through large-scale simula-
tions, a different angle compared to our focus on the intrinsic
dynamics of evolution without scaling the system’s size.

Methods
We introduce Leniabreeder, a framework designed to auto-
mate the discovery of diverse patterns in complex systems.
While we showcase its effectiveness in the context of Lenia,
the methodology is generally applicable to other artificial
life systems. We formalize the discovery of diverse artificial
species as an evolutionary algorithm, specifically a Quality-
Diversity optimization problem. We employ two approaches:
MAP-Elites, using manually defined diversity criteria to steer
the search towards areas of interest, and AURORA, using
unsupervised descriptor and fitness functions circumvent-
ing the need for predefined diversity criteria and broadening
the range of possible discoveries. Both methods follow a
traditional QD loop of selection, variation, evaluation and
addition. In this section, we detail the search space, the varia-
tion operator, as well as additional design choices to direct
the search towards self-organizing, autonomous patterns.

Search Space
We restrict the world configuration to a 2-dimensional 128×
128 array with 3 channels and we use a total of 15 kernels: 3
self-interacting kernels for each channel and 1 cross-channel
kernel for each pair of distinct channels. The search space
encompasses all possible genotypes, which are composed of
two elements: the seed and the rule parameters.

The seed represents the initial configuration of a 32 ×
32 × 3 array, totaling 3072 sites. This array sets the initial
configuration for the simulation. The rule parameters in the
genotype are limited to (µk, σk, hk) for each kernel, totaling
15×3 = 45 parameters. The remaining parameters (rkR, βk)
are fixed and shared across all individuals. These parameters
can either be randomly sampled at the beginning or taken
from an existing self-organizing pattern. In this work, we
use the parameters from the soliton “Aquarium” (pattern id
5N7KKM), previously discovered by Chan (2020).

The search space spans a total of 3072+45 = 3117 dimen-
sions. The genes of an individual are expressed by initializing
a world configuration A0 to a zero array except for the center,
which is initialized with the seed from the genotype. Then,
the world is updated according to the genotype’s rule param-
eters for N steps, resulting in a sequence (A0, . . . ,AN∆t),
which represents the development and manifestation of the
phenotype over time.

Variation Operator
Our methods are genetic algorithms that employ a special-
ized variation operator known as iso+LineDD (Vassiliades
and Mouret, 2018). This operator is designed to efficiently
navigate the genotype space by introducing variations that
are informed by both isotropic and directional perturbations.
The isotropic variation introduces small, random changes to a
solution, ensuring a thorough exploration of the search space
around the current solution. In contrast, the directional vari-
ation generates new candidate solutions by exploring along
the line defined by two existing solutions in the population.
Given two parent solutions with gentoypes x1 and x2, an
offspring solution x is generated as follows:

x = x1 + σ1N (0, I) + σ2(x2 − x1)N (0, 1)

Solitons
For a given individual, we can decode its genotype into a
seed and rule parameters. Its genes are expressed through Le-
nia simulation: the seed undergoes a developmental process
driven by the rule parameters. This developmental process
can potentially culminate in the emergence of a distinct, au-
tonomous, self-organizing phenotype, known as a soliton.
Our focus is on discovering and identifying such solitons that
maintain their structure and coherence over time, in contrast
with transient, ephemeral or spatially diffused patterns. In
this section, we will delve into statistical measures that aid
in quantifying the characteristics of patterns and potentially
assess their stability and agency.

Statistical Measures Each genotype results in a sequence
of world states, (A0, . . . ,AN∆t), from which we can derive
various statistical measures. We draw inspiration from the

Statistical measure Formula

Mass m =
∑

x∈L
∑

i Ai(x)
Center of mass x = 1

m

∑
x∈L x

∑
i Ai(x)

Velocity v = ∆x/∆t
Angle α = arg(v)
Linear velocity V = |v|
Angular velocity ω = ∆α/∆t
Color C = 1

|L|
∑

x∈L A(x)

Table 1: Statistical measures calculated over world state A.
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Figure 1: The world configuration A is cropped around the
center of mass of the phenotype to form the 32×32×3 input
to the encoder (blue). Then, the encoder compresses the
high-dimensional input into a low-dimensional latent vector
z (green). During training, the decoder (red) transforms
the latent vector back to the original input to compute a
reconstruction loss, that is optimized via gradient descent.

original Lenia paper (Chan, 2019) where statistical measures
are introduced to provide quantitative analyses of phenotypes.
We rely on these predefined measures to design fitness and
descriptor functions that are manually directed towards char-
acteristics of interest. At each timestep, the world state A can
be transformed into statistical measures, such as mass, veloc-
ity, color, see Table 1. For example, the statistical measure
“color” is a 3-dimensional vector with values ranging from 0
to 1, representing the average RGB (Red, Green, Blue) value
of the phenotype. This measure not only conveys the pre-
dominant color of the phenotype but also indirectly captures
information about its mass. Specifically, an RGB value of
[1, 1, 1] indicates white and a maximum mass, while an RGB
value of [0, 0, 0] indicates black and an absence of mass.

Furthermore, from the sequence (A0, . . . ,AN∆t), we
can derive time-series of statistical measures, denoted
(a0, . . . ,aN ). In this research, the first n timesteps are con-
sidered to be the developmental phase of the seed. After n
timesteps, the pattern is presumed stable and the sequence
(an+1, . . . ,aN ) is used to characterize the phenotype. In
particular, this sequence can be aggregated into summary
statistics such as mean, median, variance and so on. For in-
stance, velocity sequence (vn+1, . . . , vN ) can be aggregated
into a velocity average to assess the typical movement speed
or into a velocity variance to quantify the movement stabil-
ity. These summary statistics facilitate the design of fitness
and descriptor functions used in MAP-Elites or AURORA.
Combined with expert knowledge, these manually defined
statistical measures enable to search for solitons with specific
characteristics, such as a certain mass, speed or color.

Unsupervised Statistical Measures Unsupervised repre-
sentation learning techniques, such as autoencoders, enable
to automatically discover statistical measures without requir-
ing labeled data. In our approach, we use a Variational Au-
toEncoder (VAE) (Kingma and Welling, 2014) to compress
high-dimensional phenotypes into lower-dimensional latent
representations. These representations are essentially statisti-
cal measures that can be used to define fitnesses and descrip-
tors. The VAE architecture comprises two main components:

Phenotype Phenotype Phenotype Phenotype Phenotype
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Figure 2: The phenotype at different timesteps forms a trajec-
tory in the latent space Z . The green dot represents the mean
vector of the latent trajectory, i.e., the unsupervised descriptor
of the individual. The red segments represent the Euclidean
distance between the latent vectors and the descriptor, used
to compute the unsupervised fitness of the individual.

an encoder and a decoder that facilitate the learning of latent
representations. The input to the VAE is a 32× 32× 3 crop
of the configuration A, centered around the center of mass of
the phenotype. The encoder transforms the high-dimensional
input into a 8-dimensional latent vector z and the decoder
recreates the input from the encoded representation, see Fig-
ure 1. AURORA utilizes data generated during the evaluation
step of the QD loop to train the VAE.

Each individual induces a sequence of configuration
(A(n+1)∆t, . . . ,AN∆t) that can be encoded into a latent
space trajectory (zn+1, . . . , zN ) with the encoder. This tra-
jectory within the latent space can be considered as a se-
quence of statistical measures and can be aggregated into de-
scriptors and fitnesses as outlined in the previous section. The
average latent representation provides a succinct and informa-
tive summary of a phenotype’s essential characteristics. For
this reason, we define the unsupervised descriptor as the mean
vector of the latent trajectory, Dθ(x) = 1

N−n

∑N
i=n+1 zi.

This descriptor function can be combined with any manually
defined fitness functions.

Furthermore, we utilize the latent trajectory to develop
an unsupervised fitness function that captures fundamental
characteristics of life such as agency, self-organization and
stability. A key premise is that a stable pattern should man-
ifest minimal variance in its latent representation. A latent
representation provides a condensed yet informative abstrac-
tion of the raw pixel data. Consequently, variance in the
latent representation reflects meaningful changes in the phe-
notype’s structure, rather than superficial image noise or
minor visual discrepancies. To quantify this, we define the
unsupervised fitness as the negative average Euclidean dis-
tance between the latent vectors and the mean vector of the
trajectory, Fθ(x) = − 1

N−n

∑N
i=n+1 ||zi−Dθ(x)||2, see Fig-

ure 2. This fitness measures the spread or dispersion of the
latent vectors relative to their mean in a multidimensional
space. This approach is grounded in the principle that “what
persists, exists” and is related to homeostasis, one of the
pillars of life (Bartlett and Wong, 2020).



These unsupervised descriptor and fitness functions are
particularly valuable because their computation within a la-
tent space makes them domain-agnostic. However, the fitness
function is only partially unsupervised as it is intentionally
biased to capture the spread of the latent trajectory. Moreover,
this definition of self-organization and stability has limita-
tions, as it tends to penalize individuals exhibiting periodic
stability or engaging in chaotic movements.

Constraints on Growth To direct the search towards stable
patterns, we enforce three constraints on the phenotypes. The
objective of these constraints is to ensure that phenotypes
do not exhibit positive or negative infinite growth (Chan,
2019). Explosion or evaporation happens when the mass
expands to very large values or shrinks to zero. We discard
any individuals inducing a sequence (A(n+1)∆t, . . . ,AN∆t),
where at least one phenotype has evaporated, exploded or is
too spread. These constraints are controlled through three
hyperparameters: A minimum and maximum mass threshold
mmin, mmax and a mass spread σm.

Experiments
The objective of our experiments is threefold. First, we
assess the capability of Leniabreeder to evolve a population
of individuals with a diversity manually directed towards
specific characteristics of interest. Second, we evaluate the
ability of Leniabreeder to evolve an unsupervised diversity of
individuals, illuminating Lenia’s vast landscape. Third, we
explore Leniabreeder’s potential to exhibit characteristics of
open-ended evolution, such as unbounded diversity.

We conducted a series of experiments using the QDax
framework and a GPU-accelerated implementation of Lenia
in JAX. Upon acceptance, the source code will be made avail-
able publicly in a container to facilitate the reproducibility of
all experiments and figures. Each experiment was replicated
10 times with random seeds. For the quantitative results, we
report p-values based on the Wilcoxon–Mann–Whitney U
test with Holm-Bonferroni correction. Additional results are
available at leniabreeder.github.io.

Manual Diversity
We report five experiments using MAP-Elites, each employ-
ing different combinations of manually defined descriptors
and fitnesses, summarized in Table 2. This algorithm ne-
cessitates choosing appropriate bounds for each statistical
measure. For color and angle, bounds naturally encompass
all potential values, with color in the range [0, 1]3 and angle
in [−π, π]. However, for mass and velocity, we choose arbi-
trary yet reasonable bounds of [0, 16] and [0, 0.5] respectively,
due to the absence of natural limits. For context, the famous
soliton named Aquarium (pattern id 5N7KKM), discovered
by Chan (2020), has a mass of roughly 2.42 units and a veloc-
ity of 0.12 units. To evaluate MAP-Elites, we consider two
metrics. The coverage corresponds to the proportion of filled

Fitness Descriptor Coverage Max fitness

velocity avg [color] 38.5% 1.01
mass avg [color] 39.8% 97.5
mass var [color] 39.0% 1, 525
neg angle var [mass, velocity] 52.2% −1.31× 10−7

neg mass var [angle, velocity] 42.7% −2.00× 10−7

Table 2: MAP-Elites Median coverage and max fitness for
different combinations of fitness and descriptor functions.

cells in the grid of solutions and the max fitness corresponds
to the fitness of the most optimal solution in the grid.

The experimental results reported in Table 2 indicate that
MAP-Elites effectively generates diverse individuals with
targeted characteristics. For example, MAP-Elites success-
fully identified solitons across a broad spectrum of colors
combined with three distinct fitness functions. Specifically,
the coverage of approximately 39% of the color space is par-
ticularly significant considering that not all possible colors
are viable. For instance, pure black [0, 0, 0], indicating pat-
terns that have evaporated, and pure white [1, 1, 1], indicating
exploded patterns, are inherently unattainable. The qualita-
tive evidence in Figure 3 confirms MAP-Elites’s capability to
discover patterns spanning all intended color combinations.

Moreover, MAP-Elites efficiently identified solitons with
desired locomotion traits as defined by various combinations
of fitness and descriptor functions. The experiments demon-
strated effective optimization of fitnesses such as negative
angle and mass variances, as indicated by max fitness values
approaching zero. This method is able to evolve a population
of species with a wide range of masses, different velocities
and different orientations as indicated by the high coverage
score. The qualitative results in Figure 3 demonstrate that this
approach is able to find patterns with a wide range of mass,
as well as different locomotion angles and angular velocities.

Unsupervised Diversity
We report five experiments using AURORA, pairing the un-
supervised descriptor with various fitness functions including
velocity, negative mass, negative angle variance, negative
mass variance, and a purely unsupervised approach. To eval-
uate AURORA, we consider three metrics. The entropy cor-
responds to an estimation of the amount of information in
the population and is related to the notion of ecology, in-
troduced by Dolson et al. (2019) to quantify diversity. We
utilize the VAE that models the likelihood and posterior dis-
tributions of the data X (i.e., the phenotypes), to develop a
Monte-Carlo approximation of the entropy via the formula
H(X) = H(Z) +H(X|Z)−H(Z|X). Note that the accu-
racy of this metric depends on the quality of the VAE. The
variance metric measures the average pixel-wise variance
among the phenotypes stored in the repertoire, serving as a

https://leniabreeder.github.io


Figure 3: MAP-Elites Each row displays a single, independent run with each image sized 128 × 128 × 3. Row 1 features
individuals selected for velocity average fitness and color descriptor, arrayed from left to right to showcase proximity to
specific colors such as red [1, 0, 0], green [0, 1, 0], blue [0, 0, 1], red-green, red-blue, blue-green, red-green-blue and random
[0.01, 0.6, 0.5]. Row 2 focuses on negative angle variance for fitness with mass and velocity as descriptors, showing a gradient of
increasing mass and constant velocity. Row 3 highlights negative mass variance for fitness with angle and velocity as descriptors,
arranging samples by different angles, clockwise rotation, counterclockwise rotation and no rotation.

coarse but direct indicator of population diversity. In contrast
with entropy, this practical metric provides a robust estima-
tion that is independent of the VAE, making it a reliable and
grounded measure of diversity. Finally, the cumulative elites
tracks the cumulative sum of novel offspring solutions added
to the repertoire during the run, reflecting the influx of novel
solitons that continually refresh the population.

The qualitative results in Figure 4 illustrate that AURORA
can evolve an expansive diversity of solitons, encompassing
a wide array of shapes, colors, sizes, and locomotion proper-
ties — significantly broader than the targeted diversity seen
in MAP-Elites. In Figure 5, initial entropy values stabilize
as the autoencoder, which starts with random weights, be-
gins to train. Subsequently, entropy consistently increases,
indicating a growing information richness within the popu-
lation, accompanied by an increase in phenotype variance.
This suggests that the repertoire is continually enriched with
novel phenotypes exhibiting different shapes and colors. No-
tably, runs employing unsupervised fitness consistently show
higher variance (statistically significant with p < 0.005),
suggesting a more diverse array of traits compared to those
with predefined fitness functions. The steady increase in
the cumulative elites added to the population, even after one
million evaluations, indicates a growing number of novel in-
dividuals constantly being found, demonstrating a continuous
change in the information content of the population, which
supports the sustained generation of novelty (Dolson et al.,
2019). This constant flow shows that the dynamic interaction
between the population and the niche boundaries fostered
by AURORA is effective in promoting a diverging and ever-

evolving ecosystem, that avoids premature convergence. The
ongoing increase in population entropy and variance, cou-
pled with the continuous introduction of new elites, highlights
AURORA’s potential to drive open-ended evolution, align-
ing with some of the key dynamics — namely, the perpetual
production of novelty, unbounded diversity, and continuous
change in information content (Dolson et al., 2019; Packard
et al., 2019; Soros and Stanley, 2014).

Conclusion
We show that Quality-Diversity is an effective framework for
the automatic discovery of diverse self-organizing patterns in
complex systems. Our findings not only showcase the breadth
of artificial life within Lenia but also underscore the relevance
of Quality-Diversity algorithms in illuminating an ecosystem
of artificial species and exhibiting a sustained generation
of diversity. Combined with Lenia, we show that Quality-
Diversity has the potential to present some hallmarks of open-
ended evolution, aligning with its original purpose. We make
the code publicly available and encourage the community to
participate in the discovery of novel and diverse life forms.

At the core of Leniabreeder lies the utilization of a novel
unsupervised fitness function. Yet, it relies on simple heuris-
tics that only mimics homeostasis. We posit that enhancing
this fitness function would enable to discover even more
meaningful expressions of artificial life. Furthermore, the
current autoencoder architecture is not invariant to rotation
or scaling. We believe that improving the autoencoder archi-
tecture could also benefit the framework to capture a more
refined notion of diversity.



Figure 4: AURORA Each block of rows displays a single, independent run with each image sized 64× 64× 3. Row 1-3 Fitness
is the negative angle variance. Row 4-5 Fitness is the negative mass variance. Row 6-8 Fitness is unsupervised.
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Figure 5: AURORA Entropy, variance and cumulative elites with different fitness functions. The solid line is the median and the
shaded area represents the first and third quartiles.
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